
Better Event System
Release 0.0.1

addikted

Apr 10, 2022

CONTENTS

1 Starter Guide 3
1.1 Installation . 3
1.2 Usage . 3

2 API Reference 5
2.1 Event . 5
2.2 Event System . 6
2.3 Event Args . 7

3 Help 9
3.1 preprocessor / postprocessor . 9

i

ii

Better Event System, Release 0.0.1

Create an extensive Event System with ease

Modern

BetterEventSystem is a modern library, with support for asynchronous events.

Extensive

BetterEventSystem is extensive, with a lot of features that you will never need. but if you do, you got it!

Easy to use

BetterEventSystem is a simple, easy to use library, with a simple API. simple tasks, simple code.

Open source

Nothing spooky, nothing scary, BetterEventSystem is open source, and licensed under a very permissive license.

CONTENTS 1

https://github.com/AW1534/BetterEventSystem/blob/main/LICENSE

Better Event System, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

STARTER GUIDE

How to get started with BetterEventSystem

See also:

This is a short guide to help you get a project up and running. you should then go to the API reference to extend the
functionality of your project.

1.1 Installation

Installation is simple. just install Addikted.BetterEventSystem From your nuget package manager.

1.2 Usage

Note: before you start using BetterEventSystem, you need to add the Addikted.BetterEventSystem namespace
to your project.

1.2.1 Creating a new event

new Event("event_name")

An event will be created with the name event_name.

1.2.2 Getting an event

EventSystem.GetEvent("event_name")

This will find and return an event with the name event_name, if it does not exist it will create it.

3

Better Event System, Release 0.0.1

1.2.3 Adding a listener

EventSystem.GetEvent("event_name").AddListener((e) => {
//do something

});

A listener is a function that is called when the event is fired. All listeners are called in the order they were added.

1.2.4 Broadcasting / emitting an event

EventSystem.GetEvent("event_name").Broadcast(data);

you can pass any object you want to the event, and it will be passed to all listeners/preprocessors through the Even-
tArgs.data property.

All done, check out the API reference to see how to extend the functionality of your project.

4 Chapter 1. Starter Guide

CHAPTER

TWO

API REFERENCE

See also:

This is the API reference for the BetterEventSystem. If you are looking for a guide, please refer to the starter guide.

2.1 Event

all the following properties and methods are available in the Event. class.

2.1.1 Constructor

Name Type Default Description
name String N/A The name of the Event
allowAsync Boolean true Whether or not to allow async calls to the listeners
register Boolean true Whether or not to register the event in the Event System.

5

Better Event System, Release 0.0.1

2.1.2 Methods

Name Re-
turn
Type

Parameters Description

AddLis-
tener

void Action<EventArgs>
listener

Add a listener to the Event

Re-
moveLis-
tener

void Action<EventArgs>
listener

Remove a listener from the event

AddPre-
processor

void Action<EventArgs,
Action<EventArgs>>
preprocessor

Add a preprocessor to the event

Re-
movePre-
processor

void Action<EventArgs,
Action<EventArgs>>
preprocessor

Remove a preprocessor from the event

RemoveAl-
lListeners

void N/A Remove all listeners from the event

Re-
moveAll-
Preproces-
sors

void N/A Remove all preprocessor from the event

RemoveAll void N/A Remove all listeners and preprocessor
Broadcast EventArgsobject data = null Broadcast the event to all listeners, passing the data to all in-

side the EventArgs.data property, returns the final Even-
tArgs object

2.1.3 Properties

Name Type Description
Name String The name of the event
AllowAsync Boolean Whether or not to allow async calls to the listeners

2.2 Event System

The event system is the heart of the BetterEventSystem. It is a static class that contains all the events and their listeners.
The following properties and methods are available in the EventSystem. class.

6 Chapter 2. API Reference

Better Event System, Release 0.0.1

2.2.1 Methods

Name Return
Type

Parameters Description

GetEvent Event String name, bool safe =
true

Get an event by name, creating the event if safe is
true

Register Event Event event Register an event

2.2.2 Properties

Name Type Description
Events List<Event> A list of all the events

2.3 Event Args

The EventArgs class allows you to pass data to listeners.

2.3.1 Methods

Name Return Type Parameters Description
cancel void bool cancel = true cancel the execution of the layers. learn more

2.3.2 Properties

Name Type Description
data object contains the data sent to the broadcast method, can be modified during middleware

2.3. Event Args 7

Better Event System, Release 0.0.1

8 Chapter 2. API Reference

CHAPTER

THREE

HELP

Here are some things about BetterEventSystem that i think might be confusing, so i wrote this page to help you.

Don’t be afraid to use the contents section at the right of this page to find what you need.

If you still have questions, check the API reference or feel free to contact me

3.1 preprocessor / postprocessor

postprocessor

preprocessors are functions that are called before all listeners. They can be used to modify the data before your listeners
are called.

How do I create a preprocessor?

to add a preprocessor to an event, use the AddPreprocessor method. your preprocessor function must take two
parameters, the first is an EventData, the second is an Action.

Once you have finished modifying the data, you must call the second parameter to continue the event. If you don’t, the
preprocessor will be called in an infinite loop until you do.

If you don’t want to modify the data, just call the second parameter anyway.

Example:

// add preprocessor to the event
EventSystem.GetEvent("my_event").AddPreprocessor((e, next) => {

Console.WriteLine("my_event is about to be triggered, this is a preprocessor");
// cast the data to a dictionary, as we send it as a Dictionary. If your data is not␣

→˓a dictionary, you must cast it to whatever you want to send.
// But keep in mind if it is not a dictionary, the following code will not work.
Dictionary<string, string> data = e.data as Dictionary<string, string>;
foreach (var item in data.Values.ToList()) {

Console.WriteLine("data: " + item); // this will print all the values in the␣
→˓dictionary

}
data.Add("preprocessor", "true"); // add a new key to the dictionary
e.data = data; // set our changed data
next(e); // pass our data to the next preprocessor or the event listener

});

9

https://github.com/AW1534

Better Event System, Release 0.0.1

What is the difference between a preprocessor and a listener?

A preprocessor is a function that can be used to modify the data before your listeners are called.

A listener cannot modify data, but a preprocessor can.

postprocessor

postprocessors are functions that are caled after all listeners.

How do i create a postprocessor

to add a postprocessor to an event, use the AddPostprocessor method. your postprocessor function must take an
EventData object.

What is the difference between a postprocessor and a listener?

It is the exact same as a listener, except it is called after and can be cancelled by the listener dynamically.

Example:

// add postprocessor to the event
EventSystem.GetEvent("my_event").AddPostprocessor(e => {

Console.WriteLine("my_event has finished being run.");
// cast the data to a dictionary, as we send it as a Dictionary. If your data is not␣

→˓a dictionary, you must cast it to whatever you want to send.
// But keep in mind if it is not a dictionary, the following code will not work.
Dictionary<string, string> data = e.data as Dictionary<string, string>;
foreach (var item in data.Values.ToList()) {

Console.WriteLine("data: " + item); // this will print all the values in the␣
→˓dictionary

}
});

10 Chapter 3. Help

	Starter Guide
	Installation
	Usage
	Creating a new event
	Getting an event
	Adding a listener
	Broadcasting / emitting an event

	API Reference
	Event
	Constructor
	Methods
	Properties

	Event System
	Methods
	Properties

	Event Args
	Methods
	Properties

	Help
	preprocessor / postprocessor

